The Real Global Price of What You Wear, Part 6

Many embroidery floss skeins in rainbow order, making a blank heart shape in the center.
Photo by Karly Santiago on Unsplash.

If you’ve been reading articles from my series about the clothing industry, then you probably want to know more about what you can do about fashion waste. The short answer is that first, you can take good care of the clothes you have by laundering them well and repairing them. Second, stop buying too much clothing – even when it’s a great deal! Try to buy only the pieces you really love and that fit well. Don’t just buy something because you found it on the clearance rack.

Globally, we have to stop the overproduction of clothing and fast fashion.

As Elizabeth L. Cline noted, in America, we spend more money on restaurants than we do on clothes. We don’t see any reason to spend more on fashion because of the availability of cheap clothes. “As any economist will tell you, cheaper prices stimulate consumption. And the current low rate of fashion has spurred a shopping free-for-all, where we are buying and hoarding roughly 20 billion garments per year as a nation…If we could only give up our clothing deals and steals, we might just see that there are far more fortifying, not to mention more flattering, ways of getting dressed.”1

“The most sustainable clothes are the ones already in your closet.” -Katrina Rodabaugh, Make Thrift Mend2

Close-up of a white front-load washing machine, with a hand turning the dial.
Photo by rawpixel.com form PxHere.

Wash Your Clothes Less

Washing our clothes less makes them last much longer. It also reduces the number of microfibers, that is, microscopic pieces of plastic from synthetic clothing, that enter our water systems. You can wear some articles several times before you launder them unless you sweat or spill something on them. You can freshen your clothes without washing them, by hanging them in the bathroom during a shower or hanging them outside. Read “Make Your Clothes Last Longer with Good Laundry Habits” for laundry tips.

“Americans in particular overwash their clothing and rely on machine washing instead of steaming or airing out their clothes, which shortens the life span of what we wear.” -Elizabeth L. Cline, The Concious Closet3 

Tan cardigan with white and yellow flower embroidery near shoulder.
Photo by Alex Baber on Unsplash.

Mending

“When you take the time and effort to repair or improve a garment, you will value it and, more importantly, enjoy wearing it.” -Zoe Edwards, Mend It, Wear It, Love It!4

Mending can extend the life of your clothing and keep them out of the landfill. Learning basic sewing and embroidery is worth the effort because you can save money and protect the environment.

In her book, The Conscious Closet, Elizabeth L. Cline offered an entire chapter on how to perform basic repairs and instructions on several types of stitches without sewing skills or a sewing machine. A few common repairs include missing buttons, seam splits, loose stitching, applying patches, and darning socks. You can find tutorials for all of these in her book. Often you can find tutorials online for free, as well.

Cline also recommended using a fabric shaver to remove pills,5 which are the little bobbles of loose fibers that build up on your clothes. Sophie Benson, author of Sustainable Wardrobe, wrote that you can also reuse an old razor to remove pills. Just avoid pulling them off with your fingers because that can cause damage to the fabric.6

BEAUTURAL Fabric Shaver and Lint Remover, gray, showing the device and two blade attachments.
This is the fabric shaver I use and I’ve been happy with the results. This is not a paid promotion or affiliate product.

Tip: You can even find sewing materials and notions – and even sewing machines – at thrift stores and second-hand shops. You don’t necessarily have to pay retail for those things.

“Wear visibly mended clothes proudly. Visible mending is a great conversation starter, and a visibly mended garment is the perfect uniform for the reluctant activist because it does the heavy lifting for you. Whenever you wear something visibly mended and chat with someone about it, you’re raising awareness that mending is possible, it can be creative and colourful, and caring for our clothes is an important thing to do.” -Erin Lewis-Fitzgerald, Modern Mending7 

Tiny flower embroidery on denim, many colors, needle with light blue thread at center.
Photo by Barbara Krysztofiak on Unsplash.

“In repairing our clothes, we send a message. With each stitch we declare, ‘I value the people who made this, I value the natural resources that went into making it and I value the version of myself that chose it.’ ” -Sophie Benson, Sustainable Wardrobe8

Hire A Tailor

If you don’t want to learn basic sewing or don’t have the time, you can take your items to a tailor. This costs more but still extends the life of the clothing you already own. Sophie Benson wrote, “Both alterations and repairs should very much be seen as part and parcel of the maintenance of our clothes. Any action that keeps your clothes in wearable condition is classed as maintenance, and this includes things like lowering hems, taking in or letting out waistbands, altering silhouettes and replacing linings. You might be surprised what a tailor can do.”9

“Through mending we slow down consumption, extend the life of our garments, and increase resilience and technical skill…As we mend our textiles we work on an individual scale to mend overconsumption, fast fashion, and the unethical treatment of people and the planet.” -Katrina Rodabaugh, Make Thrift Mend10

Reuse Old Clothes

You can reuse clothes for repair projects and even refashion them. You can also just find a way to reuse them around the house. “This is the way humans ‘recycled’ worn clothes for ages. Scrap denim is ideal for mending and patching…Cotton t-shirts make great cleaning cloths and rags. And worn or stained items and scuffed-up shoes are great to wear for yard work or other outdoor activities.”11 

You can cut off the sleeves of a long-sleeved shirt and make a tank top, or make jeans into shorts. This is especially true for children’s clothing! Other clothes can be repurposed into bags, dog toys, or pillows. Use your imagination! The internet abounds with inspirational ideas!

“Slow fashion is…saving up to buy fewer pieces of higher quality and keeping them for longer (or forever!); it’s shopping secondhand; it’s repairing instead of throwing away; it’s brands making to order to reduce waste; it’s local or small batch production; it’s personal style not trends; it’s releases once or twice per year instead of every week. It’s our way out of this mess.” -Sophie Benson, Sustainable Wardrobe12

Wear Clothes Longer

This is the goal: To wear your existing clothing longer.

If you take good care of your clothes through good laundering and simple mending, your clothes will last a lot longer. This will save you money and time, and it is better for the environment. “According to Greenpeace, wearing your clothes for at least two years will reduce greenhouse gas emissions by more than 24 percent.”13 We can all make a big impact when it comes to clothing.

“Mending, repairing, and caring for our clothes is the essence of sustainable fashion.” -Elizabeth L. Cline, The Conscious Closet14 

I hope this helps! Feel free to leave me a comment about your ideas for caring for or repairing clothing. Thank you for reading, please share and subscribe!

 

Additional Resources:

Website of Erin Lewis-Fitzgerald, author of Modern Mending.

Reuse shop, FabScrap, “FABSCRAP diverts thousands of pounds of commercial textile waste from landfills every week. These pre-consumer materials are often in perfect condition.”

Responsibly sourced wool and knitting materials, Peace Fleece store.

Good on You website, evaluates the ethics and sustainability of fashion brands around the world.

See books on Mending in the footnotes or on my Books Page under “The Textile & Clothing Industry.”

Footnotes:

The Chemicals in Plastic and Why it Matters, Part 2

Last updated on May 21, 2023.

Colorful plastic litter organized by color on a beach.
Image by Filmbetrachter from Pixabay

Plastics are made from chemicals and petroleum, which you read about in Part 1 of this series. Today, I want to tell you about the chemical contents of plastics according to resin code, the number on the bottom surrounded by a triangle. More importantly, I want to inform you of the ways they may be toxic to our health.

Resin Identification Codes (RICs)

Resin symbol for #1 plastic, or PET.
Image by OpenIcons from Pixabay.

The plastics industry created RICs in 1988 as part of their campaign to boost plastic’s image. They even lobbied to have state legislatures adopt them. But this little symbol on almost all plastic packaging is misleading. Many assume that the recycling symbol or RIC means that a package is automatically recyclable. However, that is not true, it actually only refers to the type of plastic resin used.

To reduce confusion, ASTM, the organization that regulates the RIC system, updated the symbol from the chasing arrows to a solid triangle in 2013. “However, manufacturers aren’t required to change their equipment to incorporate the new symbol, which is why you still see the arrows on many plastic products,” according to an article on Oceano.org.1 So it’s still easy for people who don’t know to mistake the RIC as a recycling symbol versus an industry tag for the plastic.

Graphic comparing the types of recycling symbols used with RICs.

A clear plastic PET food container showing the updated symbol, a numbe 1 inside of triangle.
Example of a plastic PET food container showing the updated symbol. Photo by Marie Cullis.

“Thanks to the intelligent strategy that the plastic industry came up with in the early 1980s of imprinting a recycling code on the most commonly consumed plastic items, a large majority of consumers think that the bulk of the plastics they consume are recyclable and actually do get recycled through their local curbside recycling program. In reality, only a small percentage of the contents of a recycling box is recycled.”2

The RICs / Types of Plastics

Please note: There are 7 resin identification codes, but that does not mean there are only 7 types of plastics. There are, in fact, tens of thousands of chemical combinations.3

Resin Identification Coding System graphic
Image courtesy of Wikimedia Commons.

Next, let’s look at the 7 RICs types, what they are used for, their characteristics, their chemical contents, and their potential toxicity. Note that this is not an exhaustive list; nor is each category exhaustive in the standard products or characteristics.

“Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented…These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging.”4

#1 PET/PETE: Polyethylene terephthalate

Standard products: Water bottles, soda bottles, salad dressing bottles, food containers such as cooking oil and peanut butter, wrinkle-proof clothing, fleece blankets, padding in pillows and comforters, carpeting, other polyester fabrics.

About: PET is the most valuable type of plastic and the most recycled. There are typically two types: one is made with a blow molding machine; the other is thermoform which is made by heating a plastic sheet until pliable and then molded into a specific shape. The main difference is in molecular weight. Higher molecular weight items, such as bottles and jugs made from blow molding, are more valuable than their thermoform counterparts. Thermoform, though more difficult to sell, is often recycled into carpeting.5

Chemical content: “A chemical called antimony trioxide is used as a catalyst and flame retardant in making PET, and this antimony additive is considered a possible carcinogen.” The amount in one single water bottle is minimal, but leaching increases with heat. Think of those water bottles stored in the car during the summer. “There is research showing that PET may leach phthalates too, even though the plastics industry says that phthalates are not required to make PET.”6 Regardless, think about switching to metal or glass containers whenever possible.

Close-up of clear blue water bottles
Image by pasja1000 from Pixabay.

#2 HDPE: High-density Polyethylene

Standard products: Milk jugs, water bottles, juice, bottles, bleach, dish and laundry detergent bottles, shampoo and conditioner bottles, cleaner containers, over-the-counter medicine bottles, cereal box liners, Tyvek home insulation, plastic-wood composites, snowboards, 3D printing filament, and wire covering. It is even used in some plastic surgery procedures.

About: This is one of the most widely used plastics because of its versatility. It is strong, flexible, cost-effective, moisture-resistant, and resistant to most chemical solvents. It has high tensile strength and has both a high-impact resistance and melting point. “The polyethylene polymer has the simplest basic chemical structure of any polymer, making it easy to process and thus extremely popular for low value, high volume applications.”7

Chemical content: While this is considered a ‘safer’ plastic for food and drink use, there is evidence that these release endocrine-disrupting chemicals, especially when exposed to UV. “The main leaching culprits are estrogen-mimicking nonylphenols and octylphenols, which are added to polyethylene as stabilizers and plasticizers.”8 Those chemicals disrupt the body’s hormones and can cause cancer, reproductive problems, birth defects, and other developmental disorders.

“Nearly four pounds of petroleum are required for every two pounds of #2 (HDPE) plastic produced.” -Tom Szaky, Terracycle9

Angled photo of plastic milk jugs at the supermarket.
Milk jugs are typically #2 HDPE. Photo by Marie Cullis.

#3 PVC: Polyvinyl Chloride

Standard products: Think all vinyl products. Shower curtains, medical bags, medical tubing, shrink wrap, children’s toys, binders, school supplies, plastic furniture, garden hoses, vinyl clothing and outerwear, wire and cable insulation, vinyl records, carpet backing, flooring, credit cards, clamshell packaging, plumbing pipes, vinyl siding, window frames, fences, decking, other construction materials.

About: “PVC can take on a staggering variety of personalities – rigid, filmy, flexible, leathery – thanks to the ease with which it can be blended with other chemicals.”10 PVC is versatile as it can be adapted to many applications depending on the plasticizing additives. It is strong and resistant to moisture and abrasion. It can be produced clear or colored. About three-quarters of all vinyl produced goes into construction applications.

Chemical content: PVC is known as the poison plastic because it leaches toxins for its entire life cycle and should be avoided whenever possible. Vinyl is manufactured by polymerizing a chemical called vinyl chloride. It can contain up to 55% additives, mainly phthalates. The chemicals it may release during its lifetime include cancer-causing dioxins, endocrine-disrupting phthalates, bisphenol A (BPA), lead, mercury, cadmium, and other heavy metals. “The problem with PVC is that its base monomer building block is vinyl chloride, which is highly toxic and unstable, thus requiring lots of additives to calm it down and make it usable. But even in its final ‘stabilized’ form, PVC is not very stable.”11 The additives leach out and you can inhale and ingest them.

White PVC pipes stacked at a manufacturer or store.
PVC pipes, photo by Dennis Hill on Flickr, Creative Commons license (CC BY 2.0).

#4 LDPE: Low-density Polyethylene

Standard products: Film applications like bags, such as those used for bread, shopping, dry-cleaning, newspapers, frozen foods, produce, and garbage. Also used for shrink wraps, linings for cartons and cups, container lids, some squeeze bottles, orthotics, and prosthetics.

About: LDPE is a soft, flexible, lightweight plastic material, known for its low-temperature flexibility, toughness, and corrosion resistance. But it is not recyclable in any practical sense. Citing data from the Environmental Protection Agency (EPA), one large recycling corporation noted that “the overwhelming majority of products made from LDPE end up in landfills…Dumping tons of LDPE in landfills can have devastating consequences…plastic buried in landfills can leach into the soil and introduce chemicals into the groundwater.” They can threaten marine life in coastal areas, and “lightweight plastic bags can be blown great distances by the wind, ending up in bodies of water where animals eat them or become tangled in them.”12 Plastic bags causes huge environmental problems.

Chemical content: These can leach some of the same chemicals as #2 HDPE plastic. It is a thermoplastic made from the polymerization of ethylene. Ethylene is considered a building block of plastic, but it is highly flammable and reactive. It is created by Ethane Cracker Plants, which use an environmentally questionable process to extract the ethane to make ethylene. While difficult to avoid, steer clear of this plastic whenever possible.

Angled photo of the bread aisle at the supermarket.
Bread bags are typically #4 LDPE. Photo by Marie Cullis.
Blue plastic cap from a gallon milk or water jug, #4 LDPE plastic.
Blue plastic cap from a gallon water jug, #4 LDPE plastic. Photo by Marie Cullis.

#5 PP: Polypropylene

Standard products: Polypropylene is used in packaging, yogurt cups, sour cream and soft cheese containers, prescription bottles, butter/margarine containers, plastic to-go containers, leftover containers, freezer meal containers, the filter cases of some disposable home water filters, electrical wiring, and plastic bottle caps because polypropylene can withstand pressure. It is also used in vehicles for bumpers, carpets, and other parts. Polypropylene allows moisture to escape and stays dry, making it ideal for use in disposable diapers.

About: Polypropylene is sometimes referred to as the “safe” plastic, but there really is no safe plastic when it comes to food. All plastic has the capacity to poison us in certain circumstances. Polypropylene is a stronger plastic than other types, but it is generally not recyclable because there isn’t sufficient reprocessing capacity. Polypropylene is more stable and resists heat better than other plastics. So it is generally considered safer for foods and hot liquids because it leaches fewer chemicals (though it still does leach, which is why you should use glass or metal containers for your food).13 However, this is what many leftover and freezer meal containers are made from. Have you ever noticed rough patches or surface defects in your leftover containers? Any disruptions on the surface mean the polypropylene has been compromised, which increases the chances that it will leach chemicals into your food, especially when heating it.

If you have polypropylene leftover containers from before 2013, replace them. These contained phthalates and bisphenol A (BPA). And if you do replace them, please buy stainless steel or glass containers and just avoid the chemicals in plastic altogether.

Chemical content: Polypropylene is a rigid and crystalline thermoplastic made from the polymerization of the propene monomer. There is ongoing research about the health effects of certain additives leaching from polypropylene, such as oleamide, a polymer lubricant and a bioactive compound. Oleamide does occur naturally in the human body, but the long-term effects of synthetic oleamide are not yet known. In a 2021 study entitled “Plastic additive oleamide elicits hyperactivity in hermit crabs,” scientists found that it may be perceived as a feeding cue by marine species, thus increasing the consumption of microplastics.14

Angled photo of the yogurt shelves at the supermarket.
Yogurt and other dairy containers are typically #5 polypropylene. Photo by Marie Cullis.

#6 PS: Polystyrene

“Most recognizable when puffed up with air into that synthetic meringue known technically as expanded polystyrene and popularly by the trademark Styrofoam.” -Susan Freinkel, author of Plastic: A Toxic Love Story15

Standard products: The foam form, called Expanded Polystyrene (EPS), also known as Styrofoam, is used in egg cartons, meat trays, single-use food and take-out containers, coffee cups, vehicles, bike helmets, packing peanuts, and home insulation. The rigid form is used for single-use food containers, cutlery, CD and DVD cases, disposable razors, etc. “It is also combined with rubber to create an opaque high impact polystyrene used for model assembly kits, coat hangers, electronic housings, license plate frames, aspirin bottles and medical and lab equipment, including test tubes and petri dishes.”16

About: It may be difficult to avoid this stuff in home insulation, vehicles, and bike helmets, but it should be avoided at all costs when it comes to food and beverages. I wrote a lot about polystyrene in my series on Styrofoam and polystyrene food containers. These containers and cups leach styrene into food and beverages and thus enter your body. Styrene is known to likely be carcinogenic. It is considered a brain and nervous system toxicant and causes problems in the lungs, liver, and immune system.

Chemical content: Polystyrene is a synthetic polymer made from the polymerization of styrene. It is a chemically produced plastic that can be made into a hard or foam plastic. The foam is created by expanding the styrene by blowing various chemical gases into it. Polystyrene is made from ethylene and benzene, both hydrocarbons derived from by-products of petroleum and natural gas (also known as petrochemicals).

Take-out in polystyrene containers
Image by albedo20 on Flickr, Creative Commons license (CC BY-NC-ND 2.0).

#7: OTHER Plastics

This is the catch-all category for all ‘other plastics.’ Any plastic items not made from the above six plastic RICs are grouped together as #7’s. These include acrylic, nylon, polycarbonate, epoxy resins, polylactic acid (PLA), and multilayer combinations of different plastics. These are never recyclable except through a few rare and expensive take-back programs, because of the vast array of resins and chemicals mixed together. Below are some of the individual plastic types that fall under #7.

Acrylic: This is a rigid thermoplastic that is strong, diverse, and resilient; and it can be clear or solid colored. Acrylics are used to make bulletproof windows, LEGOs, dental fillings and dentures, airplane windows, aquariums, shower doors, vehicle parts, helmets, and even textiles such as clothing, tents, and sails. This is a stable plastic and is considered a ‘safer’ plastic, except for certain ones used in dental applications. Those, specifically acrylic methacrylate resins, are suspected to be cytotoxic (toxic at the cellular level) because they leach chemicals such as formaldehyde and methyl methacrylate.17 That being said, keep those LEGOs out of your toddler’s mouth.

Red, blue, white, yellow, and black Legos in a small pile.
Photo by Alexas_Fotos on Pixabay.

Nylon: This belongs to a group of plastic resins called polyamides that include Kevlar and Velcro. Invented by DuPont in the 1930s, nylon was originally invented to be a synthetic alternative for silk, for example, stockings. Nylon can be fiber, solid, or film. Items made from it include clothing, toothbrush and hairbrush bristles, rope*, instrument strings, tents, parachutes, carpets, tires, food packaging, boat propellers, skateboard wheels, and mechanical and automotive parts.

DuPont advertisement for Nylon from 1949, showing woman pulling up her Nylon stockings.
DuPont advertisement for Nylon from 1949. Image by clotho98 on Flickr, Creative Commons license (CC BY-NC 2.0).

*NOTE: Most rope and nets used in commercial fishing are made from nylon and present a huge problem in the oceans. The rope and nets break away from the fishing vessels and become threats to fish, sea turtles, and marine mammals who get entangled in them. Since nylon is plastic, it will not decompose and will remain in the ocean for decades or longer.

Seal on beach with nylon fishing net entangled around its neck.
Nylon fishing net entangled around the neck of a seal. Image by Noutch from Pixabay.

Polycarbonate: Originally designed as an engineering plastic to compete with die-cast metal and substitute glass because it is lightweight, strong, transparent, and shatter-proof. Polycarbonate is very toxic, as it is produced through the reaction of bisphenol A (BPA) with phosgene COCl and can leach chemicals into water or food.18 In the past, it was used in reusable water bottles and baby bottles until bisphenol A (BPA) was ruled toxic. “It is still a favorite for rigid products including CDs and DVDs, eyeglass lenses, dental sealants, lab equipment, snowboards, car parts and housing for cell phones, computers and power tools.” It is also still used in the large, blue water containers common in offices.19 This type of plastic is good for items not related to food or beverage. However, we should use it less overall in other applications when possible to reduce waste, because when polycarbonate breaks it cannot be recycled.

Epoxy resins: Known for high strength, low weight, temperature and chemical resistance. Used in many applications: high-performance adhesives, coatings, paint, sealant, insulators, wind turbine blades, fiber optics, electrical circuit boards, and parts for carts, boats, and planes. They are also used on the interior lining of most canned goods. Avoid these when possible, especially with food and beverage containers because they contain chemicals such as bisphenol A (BPA) and epichlorohydrin. The latter likely causes blood, respiratory, and liver damage and is a probable carcinogen.20

Polylactic Acid (PLA): This is a bio-based plastic made from lactic acid, which is a fermentation product of corn or cane sugar. This is the most common bioplastic, used in a variety of products including clothing, bottles, weed cloth, gift and credit cards, food packaging, diapers, wipes, and disposable dishes. PLA is advertised as compostable but it is only biodegradable under industrial composting conditions, which is still largely unavailable.21

Polyurethanes

This large family of plastics was introduced in 1954. Polyurethanes do not have an assigned RIC, but they are worth mentioning because they are so common. They come in foamed versions that are soft and flexible for uses in mattresses, cushioning in furniture, cars, and running shoes, spray foam insulation, and carpet underlay. They can take on a flexible form for hoses, tubing, gaskets, seals; and they can be tough and rigid for items such as insulating lining for buildings and refrigerators. Polyurethane can also be made into thin films or coatings, such as adhesives for food packaging and waterproof coatings for wood. When it is spun into fibers, it makes Spandex, Lycra, and even latex-free condoms.22

Polyurethane is made from isocyanates, a chemical that is potentially toxic, as it is the leading cause of occupational asthma. “As for our day-to-day use, polyurethanes have also been linked to a skin irritation known as contact dermatitis through direct contact with such polyurethane items as a toilet seat, jewelry and Spandex tapes sewn into underwear.” It is highly flammable and may contain flame retardant additives that go in mattresses and spray foam insulation. Flame retardants are full of chemical combinations that are considered trade secrets, so the public does not know what potential toxins are present in their items. Spray foam insulation, even once cured, can off-gas isocyanate methylene diphenyl diisocyanate (MDI), which has been linked to asthma and lung damage.23

Person in white Hazmat suit applying purple spray foam insulation.
Image by justynkalp from Pixabay.

What You Can Do

The best thing you can do is to keep learning, which you’re already doing if you’re reading this article. Stay informed and be aware of what chemicals you’re exposed to through plastics, packaging, and additives. Avoid those which are documented as toxic or even potentially toxic. Additionally, remember that few plastics are actually recycled, so reducing the plastics you purchase is essential to the environment and your health. Thank you for reading, please share and subscribe!

“We all need to separate the hopeful and increasingly fantastical act of recycling from the reality of plastic pollution. Recent data indicates that our recycling wishes, hopes, and dreams – perhaps driven in part by myths surrounding RICs – will not stop plastic from entering our oceans. Instead, if we truly want to protect the environment and marine life, we need to campaign for more plastic-free choices and zones, and for the reduction of plastic production and pollution.”24

 

Additional Resources:

11 Ways to Go Plastic-Free with Food

To learn more about Bioplastics: The Packaging Industry and How We Can Consume Differently, Part 3

The different types of plastics used in packaging: Guide to my Packaging Industry Series

More about polystyrene #5: Guide to my Styrofoam and Polystyrene Containers are Poisoning Your Food Series

Article, “An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling,” by John N.Hahladakis et al., Journal of Hazardous  Materials, Volume 344, February 15, 2018.

Footnotes: