Recycling is NOT The Answer

Recycling, separated into paper bags and blue bins
Image by GreenStar from Pixabay

I used to be an avid believer in recycling. When I was 11, my family began collecting and taking our recycling to the local center. Soon after, the county we lived in passed a recycling ordinance. I was hooked. I even wrote a paper in 9th grade about landfills and recycling, citing a study about mining landfills for recycling and resources that I’d found inspiring.1

Since then I’ve dutifully washed, separated, and toted my recycling, no matter where I’ve resided. If there was no recycling service, I tracked down the recycling centers. At parties or on vacations where recycling wasn’t available, I carted my recyclables all the way home so that I could recycle them. I have spent a great deal of time over my life teaching and educating others on the how’s and why’s of recycling.

Imagine my disappointment just a few years ago when I discovered that only 9% of plastics are recycled.

“Recycling is great, but unfortunately it is not enough. There’s simply too much recycling to process, and we’re still consuming way too many resources.” -Kathryn Kellogg, 101 Ways To Go Zero Waste

Steel and aluminum recycling bales, compacted and very colorful.
Compacted steel and aluminum recycling bales. Photo by Steven Penton on Flickr, Creative Commons license (CC BY 2.0)

The Notion of Recycling is Misleading

The reason that recycling is NOT the sole solution to our waste problem is the misconception that it IS the sole solution to our waste problem.

Many well-meaning people toss their once-used plastic bottle or container into a blue bin somewhere and think that they’ve done their part. But most do not know the real impact of what they are doing. This is because we’ve been fed the myth of recycling for decades. Plastic manufacturers carefully curated the message that we can use all of the plastic we want to because we can just recycle it. That’s a very convenient notion but not at all how it works.

Recycling actually increases consumption, because it gives consumers a false sense of taking care of the environment and doing the right thing. The fact that we think we can recycle something often drives our purchases. It is acceptable to us to buy single-serve plastic yogurt cups and plastic single drink bottles because we can justify the waste those things create with recycling. We pass these notions on to our children as well.

Additionally, companies push these falsehoods through marketing. They want us to think their products are recyclable or sustainable in some way, in order to drive up sales. Some will go as far as ‘greenwashing‘ their products.

“If the public thinks that recycling is working, then they’re not going to be as concerned about the environment.” -Larry Thomas, former head of Society of the Plastics Industry2

Bales of contaminated platic bottles on a pallet.
Photo by recycleharmony on Flickr, Creative Commons license (CC BY-NC-ND 2.0)

Recycling Myths

There are many recycling myths! Here are just a few of them.

An Endless Loop

First, recycling is not a clean, closed, endless loop where everything that goes in is remade and reused. Materials, especially plastics, degrade in quality. Many plastics are not recycled at all. Since plastics are polymers mixed with chemical additives, plastic products are typically downcycled. Downcycling means made into a lower-quality plastic. Therefore, new plastic from petroleum is often preferred by manufacturers in order to keep making equivalent-quality plastic products. Further, new plastic is often cheaper than recycled. “The current cost of virgin plastic nurdles is much cheaper than the cost of recycled plastic nurdles, so it doesn’t make economic sense to purchase recycled plastic – and much of our carefully sorted plastic ends up stuck in a landfill, incinerated, or shipped abroad.”3

So a plastic water bottle is not remade into another plastic water bottle. It may be downcycled into carpeting or synthetic fabric. After an item outlives its use as a lesser type of plastic container, carpet, or plastic lumber, it is still landfilled. So while technically recycled (downcycled) one time, it is not an endless loop of the same materials being used over and over again.

Recycled content

Further on the myth of reusing materials, have you ever noticed on something you purchased has a label that reads “made from 45% post-consumer” waste/content/plastics? This simply means that 45% of the product or packaging is made from recycled materials. While 100% post-consumer exists, most often, virgin materials must be mixed in with recycled materials to maintain a product’s durability. This is especially true with plastics, paper, and cardboard.

Recycling diverts waste from landfills

Another myth is that recycling automatically diverts waste from landfills. This is just not true. Many recyclables end up in landfills if recycling is contaminated. Contamination is simply the mixing of recyclables with dirty items and non-recyclables. The average resident may not want to spend time cleaning their recyclables or may not know it is necessary. They may not understand what is and is not accepted in their local recycling. They may also be “wish-cycling,” which is when someone attempts to recycle something they think should be recycled, like plastic bags, which are not recyclable. Plastic bags can get tangled in the machinery, and it contaminates the end product of recyclables. If recyclables have too many contaminates, or non-recyclable items, those bales are likely to be landfilled (or even incinerated) rather than sold to a company that will reuse them.

If it is collected, then it is recycled

Just because you put it in a blue bin that “accepts” something does not automatically mean those materials are recycled.

Plastics #3-#7 are often collected in municipalities across the country but they are sent to landfills or are incinerated. Some still export their mixed plastics to other countries. But collecting mixed plastics through single-stream recycling is a big part of the problem. “Acceptance of such a plastic item at a [Materials Recovery Facility (MRF)] alone is not sufficient and reasonable assurance to a customer that it will be manufactured into another item, as required by the FTC…Companies cannot legitimately place recycle symbols or “Check Locally” text on products made from plastics #3-7 because MRFs nationwide cannot assure consumers that valueless plastics #3-7 bales will actually be bought and recycled into a new product.”4

“Acceptance by a [Materials Recovery Facility] is Not Proof of Recycling.”5

Bird's eye view of paper bales at a recycling center.
Aerial view of paper bales at a recycling center. Image by WFranz from Pixabay.

Volume

The amount of waste and “recycling” humans create is ridiculous, and most people really don’t have any idea about the total volume. Waste and recycling go into a bin and we don’t think about it again. This further creates misconceptions surrounding recycling simply because we don’t understand the volumes of waste we create. If you combined the waste from just you and your neighbors, how much waste is that? Now imagine the amount from your entire neighborhood, city, state, and then nation.

The EPA estimates that of the 292.4 million tons of municipal solid waste (aka trash) generated in the U.S., approximately 69 million tons were recycled.6

Of this, 35,680,000 tons were plastic. Thus, an 800-pound bale of PET would be roughly 18,400 of the 16-ounce PET Bottles.7 Other estimates vary slightly, depending on the size and actual weight of each individual plastic bottle. Now I am not a mathematician. But if all plastics from the 35 million tons were plastic PET bottles, and one ton weighs 2,000 pounds, that would mean there are about 46,000 plastic bottles per ton. Then multiply 35,680,000 by 46,000, and that equals 1,641,280,000,000 individual plastic bottles. And that’s just plastics from one year!

A woman at the foot of a hill of plastic bottles, sorting recycling in Pakistan.
A woman scavenges for survival in a mountain of plastic waste, Pakistan. Photo by baselactionnetwork on Flickr, Creative Commons license (CC BY-NC-ND 2.0)

Recycling is Important

Extracting natural resources is terrible for the environment, human health, wildlife, and directly affects climate change. Preventing the extraction of virgin materials is important, especially when it comes to fossil fuels. Both extracting and burning fossil fuels greatly contribute to global warming.

“Recycling consistently requires less resources and produces fewer greenhouse gases (GHGs) than production of new materials,” wrote Beth Porter.8 For example, recycling aluminum uses 95% less energy than extraction. Almost 75% of all aluminum that has ever been produced is still in use. Paper has a recycling rate of approximately 68.2% (in 2018), the highest compared to other materials in municipal solid waste.9

Plastic recycling bales, colored and white/clear items.
Bales of plastic ready for shipping. Photo by Larry Koester on Flickr, Creative Commons license (CC BY 2.0)

The Plastics Market

Plastic production is complex and chemical. Worse, “most plastic is derived from oil drilling and/or fracking. Ethane cracker facilities turn ethane into ethylene, a building block of most common plastics.” We know that the oil industry, gas processing facilities, and ethane crackers are all associated with climate change and environmental problems.10 “The massive expansion of plastic production in the U.S., fueled by at least $200 billion of investment in 340 petrochemical projects, is flooding the market and causing polyethylene [recycling] prices to decline to historic lows – below prices last seen during the 2008 financial crisis.”11

Since there is little market for recycled plastics, it exacerbates the waste crisis. Recycled plastic must be given some kind of economic value so that collecting it for recycling has a financial incentive.12

“The simple fact is, there is just too much plastic — and too many different types of plastics — being produced; and there exist few, if any, viable end markets for the material. Which makes reuse impossible.”13

Stacked bales of recycling from a distance, inside the Strategic Materials recycling plant in South Windsor, Connecticut.
Bales of recycling at the Strategic Materials recycling plant in South Windsor, Connecticut. Photo by CT Senate Republicans on Flickr, Creative Commons license (CC BY-NC-ND 2.0)

What Can You do?

PLEASE RECYCLE! This post is not intended to discourage you from recycling.

But recycling is not the answer to our waste crisis.

We must restructure the way we think about trash. We must change our goals surrounding waste. The goals should focus on refusing, reducing, and reusing long before recycling enters the picture – in that order! If you read my article on how recycling works, you’ll recall that recycling processes are very complex and recycling is easily contaminated.

It is also imperative that we move away from single-use disposables. That alone could help improve pollution, reduce ocean microplastics, and help climate change. Thank you for reading, please share this article and subscribe for future articles!

 

Footnotes:

The Packaging Industry and How We Can Consume Differently, Part 3

Last updated on September 12, 2021.

Image of a green earth with green recycling arrows
Image by annca on Pixabay

In my first article, I introduced the topic of packaging – its history, the current problems with packaging, and I introduced greenwashing. In my second article, I wrote about the terms biodegradable and compostable, and how those terms are often misused. Now we will explore bioplastics.

Bioplastics

Bioplastics are used in packaging which is then marketed as sustainable, and even as biodegradable. “Most biodegradable and compostable plastics are bioplastics, made from plants rather than fossil fuels.” Mike Manna of Organic Recycling Solutions explained just that in his appropriately titled essay, “The Myth of Biodegradability” in The Future of Packaging: From Linear to Circular.

But biodegradability hinges on two key factors. First, that raw materials used in bioplastics are more sustainably sourced than petroleum-based plastic. Second, there would be less concern about pollution since these items would naturally degrade. “The latter factor, however, has mobilized a torrent of misinformation, misplaced optimism, consumer confusion, and headaches for recyclers and composters alike,” Manna wrote. They must be sent to an industrial compost facility to break down. As you know from my previous article, these facilities are few and far between. So bioplastics that require industrial composters are far from guaranteed to make it to one.

“Many bioplastics are not 100 percent made of natural biomass. To be called a bioplastic, they generally have to be at least 20 percent derived from natural sources. What about the other 80 percent? Excellent question. Many bioplastics contain fossil fuel-based plastic resins and numerous synthetic additives – such as fillers, softeners and flame retardants – just like conventional plastics.”1

Green plastic bottle
Image by Foulon Richard from Pixabay

Biodegradable plastics that do make it to an industrial compost facility will not create usable soil. It lacks the macro and micronutrients of regular compost. “It just doesn’t make environmental sense to take a plant, turn that pant into a highly refined petrochemical, only to then use it once and have it turn into something effectively worse than soil,” wrote Manna.

Bioplastics are made of either polylactic acid (PLA) or polyhydroxyalkanoates (PHA), both of which are #7 plastics. These cannot be recycled and therefore contaminate single-stream recycling systems, making entire loads of recycling unrecyclable. In many ways, bioplastics are worse for single-use disposable items than traditional fossil fuel plastics. 

Plastic bottles floating in water
Bioplastics will not break down in nature or water. Image by Foulon Richard from Pixabay

“Sadly, bioplastics do not present a solution for plastic soup or for reducing plastic litter.” -Michiel Roscam Abbing2

Renewable Sources?

Bioplastics are plastics made from natural, renewable sources, such as corn, sugar cane, or potatoes. “The thought is that plastics made with plants, as opposed to fossil fuels, will sustain the unstoppable trajectory of the world’s consumption with a more sustainable material,” Manna wrote. But bioplastics only have to be composed of as little as 20 percent of renewable material to be marketed (or greenwashed) as such, and can still contain a majority of fossil fuel-based plastic.3

Most importantly, renewable sources have to be grown and produced, and agriculture requires a ton of energy. “The corn that is used to make the bio-plastics is not organic,” so there are a lot of pesticides used. “The end result is that valuable agricultural land was used to create something that just gets thrown away,” said Céline Jennison, the founder of Plastic Tides.4

“As of now, turning plants into plastic remains more energy-intensive than recycling used plastic.”5

Corn is a crop used to supplement lots of resources such as gasoline (ethanol), agricultural feed, paper goods, and now plastics. While corn is not a fossil fuel, critics of it suggest that corn creates more problems by contributing to global warming, chemical pollution, and energy waste. It demands more nitrogen fertilizer and pesticides than other crops, and which are made from natural gas and oil. “Runoff from these chemicals finds its way into the groundwater and, in the Midwestern corn belt, into the Mississippi River, which carries it to the Gulf of Mexico, where it has already killed off marine life in a 12,000-square-mile area,” wrote author Michael Pollan.6

 “America’s corn crop might look like a sustainable, solar-powered system for producing food, but it is actually a huge, inefficient, polluting machine that guzzles fossil fuel—a half a gallon of it for every bushel.” -Michael Pollan

Cornfield
Photo by Jesse Gardner on Unsplash

“Corn is hardly sustainable, not the way it’s grown in this country. Farmed at an industrial scale, corn requires vast amounts of herbicides and fertilizer. With heavy rain, these inputs run into waterways and pollute drinking water.” -Elizabeth Royte7

Example: Coca-Cola Plant Bottle

Coca-Cola plantbottle advertisement
Coca-Cola introduced the PlantBottle in 2009.

“We replaced up to 30% of the petroleum used to make PET plastic bottles with material from sugar canes and other plants. The result? You’d have to take nearly 1 million vehicles off the road to achieve the same reduction in CO2 emissions that PlantBottle™ has achieved since 2009.”8

These claims are questionable. Supposedly, this particular alternative to traditional PET (#1) plastic can be recycled with regular PET plastics. However, how much petroleum does it take to produce sugarcane? As for the CO2 reduction, how did they come up with this calculation?

Empty Coca-Cola bottle lying on the beach
Photo by Maria Mendiola on Unsplash

The company has vowed to “use at least 50% recycled material in our packaging by 2030.”9 Why haven’t they been doing this all along? Coca-Cola released an advertisement about a “Coke Bottle Made With Plastic From The Sea,” which was made with plastics picked up by volunteers on beaches on the Mediterranean Sea.10 Volunteers who used their free time to pick up trash on beaches because it’s the right thing to do. Coca-Cola easily has enough money to pay employees to do the same thing. A true solution would be to stop pollution by eliminating this type of packaging.

What about other real solutions, like reverting back to glass bottles? We know that glass is 100% recyclable and does not leach toxins and chemicals. Glass can also be managed through a container deposit system, and can truly be a part of a circular economy.

Example: Procter & Gamble

Advertisement for Head and Shoulders bottle made from recycled beach plastic

Procter & Gamble designed a shampoo bottle using recycled beach plastic. They partnered with TerraCycle and SUEZ, a waste management firm. Again, it was using volunteer labor for the collection of plastic polluting beaches. “Sourced through partnerships with beach cleanup organizations already picking up litter on the shores of oceans and other waterways, ocean plastic originally headed for landfills was used to establish a new supply chain,” wrote Virginie Helias at Procter & Gamble. But ‘plastic originally headed for landfills’ is misleading. Much of this plastic had likely already been sent to the landfill or recycling center before and then ended up in the ocean anyway! “Ocean plastic products are seen by many as a distraction that takes attention and resources away from source reduction, while only cleaning up a tiny fraction of ocean plastic,” wrote Jennie Romer, lawyer and sustainability expert.11

Procter & Gamble’s goal is to make 100% of its packaging recyclable and reusable by 2030. While this is a respectable goal, it should focus on reusable packaging since recycling is not the answer. If we stop the disposable stream at the source, that would be far more impactful than all of the recycling systems combined. P&G can do better and have the resources to do much more.

Are there other solutions?

“The key takeaway about bioplastics: They are NOT the solution to plastic pollution and toxicity problems. They will likely play a role, but given their mixed character and the chemical additives most of them contain, relying on them is not a replacement for making a concerted effort to reduce all plastic use at the source.” –Chantal Plamondon and Jay Sinha12

Plastic substitutes are not the answer, just as synthetic biodegradable materials and recycling are not the answers. We also cannot possibly recycle all the plastic away at this point. We know that only 9% of plastic sent to recycling facilities is recycled.

But there are other packaging innovations out there. We’ll explore those in my next post, Part 4. Please subscribe and share, and thanks for reading!

 

“If you want to eliminate waste in your life – and in the world – the answers will always come down to one simple thing: consume differently.” -Tom Szaky

Additional Resources:

Article, “What you need to know about plant-based plastics,” by Sarah Gibbens, National Geographic, November 15, 2018.

Post, “The Truth & Consequences of Bioplastics,” EcoLunchbox.com, accessed July 5, 2021.

Article, “Why biodegradables won’t solve the plastic crisis,” by Kelly Oakes, BBC Future, November 5, 2019.

Footnotes: